Analysis of Thermoelectric Coolers as Energy Harvesters for Low Power Embedded Applications
نویسندگان
چکیده
The growing popularity of solid state thermoelectric devices in cooling applications has sparked an increasing diversity of thermoelectric coolers (TECs) on the market, commonly known as “Peltier modules”. They can also be used as generators, converting a temperature difference into electric power, and opportunities are plentiful to make use of these devices as thermoelectric generators (TEGs) to supply energy to low power, autonomous embedded electronic applications. Their adoption as energy harvesters in this new domain of usage is obstructed by the complex thermoelectric models commonly associated with TEGs. Low cost TECs for the consumer market lack the required parameters to use the models because they are not intended for this mode of operation, thereby urging an alternative method to obtain electric power estimations in specific operating conditions. The design of the test setup implemented in this paper is specifically targeted at benchmarking commercial, off-the-shelf TECs for use as energy harvesters in domestic environments: applications with limited temperature differences and space available. The usefulness is demonstrated by testing and comparing single and multi stage TECs with different sizes. The effect of a boost converter stage on the thermoelectric end-to-end efficiency is also discussed. Keywords—Thermoelectric cooler, TEC, complementary balanced energy harvesting, step-up converter, DC/DC converter, embedded systems, energy harvesting, thermal harvesting.
منابع مشابه
High-performance and flexible thermoelectric films by screen printing solution-processed nanoplate crystals
Screen printing allows for direct conversion of thermoelectric nanocrystals into flexible energy harvesters and coolers. However, obtaining flexible thermoelectric materials with high figure of merit ZT through printing is an exacting challenge due to the difficulties to synthesize high-performance thermoelectric inks and the poor density and electrical conductivity of the printed films. Here, ...
متن کاملDispenser Printed Thermoelectric Energy Generators
Thermoelectric energy generators are attractive as potential energy harvesters for converting waste thermal energy into electrical power. Optimized thermoelectric device designs require 100-200 μm element thicknesses currently unachievable with common manufacturing technologies. This work presents both a unique direct-write dispenser printing technique and novel polymer-composite thermoelectric...
متن کاملEnergy Saving in Evaporative Coolers using Permanent Magnet Brushless Motors
Due to low cost, evaporative coolers are used in most of the central regions and in the warm and dry climate of Iran and are considered as one of the major consumers of electrical power. Most evaporative coolers use single-phase induction motors by connecting directly to the power grid. But their eefficiency is very low, and their replacement with high efficiency electric motors is considered b...
متن کاملEnergy processing circuits for low-power applications
Portable electronics have fueled the rich emergence of new applications including multi-media handsets, ubiquitous smart sensors and actuators, and wearable or implantable biomedical devices. New ultra-low power circuit techniques are constantly being proposed to further improve the energy efficiency of electronic circuits. A critical part of these energy conscious systems are the energy proces...
متن کاملCoefficient of Performance Optimization of a Single Stage Thermoelectric Cooler
In thermoelectric coolers (TECs) applied external voltage potential is generated to a temperature difference based on the Peltier effect. Main and basic structure of TECs is in the form of single stage device. Due to the low efficiency, especially low coefficient of performance (COP) of thermoelectric coolers, optimal design of geometrical parameters of such devices is vital. For this purpose, ...
متن کامل